ANDOVER, USA: Avery Design Systems Inc., an innovator in functional verification productivity solutions, announced the availability of its revolutionary X verification solution, SimXACT, targeting comprehensive X propagation analysis including gate-level X pessimism analysis and automatic correction of gate-level simulation results, and XVER, X optimism analysis of RTL simulation.
The inherent limitations of handling non-determinism associated with X values in logic simulation means simulation results may not reflect actual hardware operation. Insight XVER uses formal methods to accurately analyze X propagations enabling engineers to:
* Run gate-level simulations free of X pessimism issues.
* Diagnose occurrences of X optimism in RTL simulations alerting designers who may be unaware of potential non-deterministic sequential behaviors.
* Perform sequential X propagation forward and backward tracing and debug.
* Accurately analyze and report X states during hardware reset and power transition sequences to confirm design specs.
SimXACT utilizes a hybrid method to perform formal combinatorial X pessimism analysis while running gate-level simulation of a full chip netlist. SimXACT supports Cadence NC-Sim, Synopsys VCS, and Mentor Questa. When an X is encountered during simulation at a register/latch input or chip-level output, SimXACT formally proves whether the X is real or false. If false, Insight applies its patent pending technology to dynamically correct the simulation value on the fly in the simulator as well as generates HDL code pinpointing a force/release at the origin of the X pessimism.
The set of HDL fixes can be used for subsequent simulations which run at their native, full simulation speed and are free of X pessimism. SimXACT also identifies clocking issues associated with internal clock generators and gated clocks and generates forces for them. Real X propagation can be debugged using a full sequential backtrace report showing the exact register to register paths from original X source registers or inputs to their destination registers spanning multiple clock cycles.
Chilai Huang, president of Avery, said: “If you’ve ever had to debug X propagation issues in failing gate-level simulations you know how cumbersome and time consuming it can be especially when the Xs turn out to be false due to a limitation of Verilog simulators known as X pessimism.
“Developing manual force/release fixes or applying random 0/1 deposit to registers at X are less than ideal solutions because bugs may be masked. SimXACT has been used analyze and correct chip-level simulations in just a few hours which involved 100s of X pessimism occurrences and is guaranteed not to mask any bugs. SimXACT improves design reliability and the automated process eliminates schedule risk during chip signoff.”
XVER supports formal sequential X propagation analysis at the RT-level including X optimism analysis of RTL simulations. Here XVER performs symbolic simulation of actual simulation testcases and analyzes them for the presence of X optimism which will result in non-deterministic sequential design operation. A full sequential backtrace report is generated showing the exact RTL path from original X source registers or inputs to their destination registers spanning multiple clock cycles.
Designers can then confirm whether the X propagations are acceptable, eliminate undesirable X sources, or make their design more tolerant of handling the non-determinism. RT-level analysis helps resolve X issues that currently may not be found until gate-level simulation is run.
SimXACT and XVER are part of the Insight product family of innovative automatic formal solutions including:
PSYN - automatic microarchitecture-level property and coverage synthesis addressing the needs of RTL designers to improve baseline coverage metrics and their use of assertion-based verification methods.
DFT - RT-level at-speed DFT testability analysis and automated testpoint insertion to improve small delay defect, transition delay fault (SDD-TDF) and path delay fault scan-based test coverage prior to running ATPG.
Friday, March 23, 2012
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.