USA: Researchers sponsored by Semiconductor Research Corp. (SRC), the world's leading university-research consortium for semiconductors and related technologies, announced development of a modeling process designed to simulate atomic-level etching with chemicals that are effective alternatives to widely used perfluorocarbon (PFC) gases.
The novel approach under way at the University of California, Los Angeles (UCLA) will identify and evaluate green plasma chemistries for processing emerging memory/logic devices and through-silicon-via (TSV)-enabled technologies for the semiconductor industry.
In order to continue the advancement of transistor and memory cell performance, the research will focus on several promising new materials that have been introduced for future generations of integrated circuits (ICs). To exploit this opportunity, the industry requires new and effective etch processes with which to pattern the next-generation fabrics.
The aim of the UCLA research effort within the SRC-funded Engineering Research Center for Environmentally Benign Semiconductor Manufacturing (ERC) is to identify environmentally friendly chemistry for patterning materials in IC fabrication and verify their performance to be equal to, or greater than, current state-of-art plasma chemistries.
The unique performance characteristics required for advanced devices and technologies dictates the use of certain materials and corresponding aggressive etch chemistries. Next-generation processes will benefit from chemicals that are more benign, less hazardous and more efficiently utilized.
The advanced modeling approach developed by UCLA will predict emissions from plasma processes and assess the effectiveness of non-PFC etch chemistries compared to those using PFC gases. While historically PFC gases have been an enabling component of semiconductor manufacturing, the industry continues to aggressively pursue and implement PFC replacement and abatement strategies. The UCLA research will greatly assist and accelerate this industry effort.
Thursday, March 21, 2013
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.