SANTA CLARA, USA: Renesas Electronics Corp. announced the new RH850/C1x Series of 32-bit microcontrollers (MCUs), designed for motor control in hybrid electric vehicles (HEVs) and electric vehicles (EVs). Based on Renesas Electronics’ 40-nanometer (nm) process, the RH850/C1x Series features the RH850/C1H and RH850/C1M MCUs, which enable embedded designers to enhance efficiency, reduce system costs, and achieve higher safety levels for HEV/EV motor control systems.
"Awareness of the vehicle’s environmental footprint is increasing, and HEV/EV designers are seeking ways to deliver even better performance, which requires new and more precise motor control systems," said Amrit Vivekanand, VP of automotive, Renesas Electronics America Inc. "The Renesas RH850/C1x MCU series integrates large flash memory capacity, robust motor control peripherals, and single/dual motor control options needed to support the required fine-grained motor control and functional safety for next-generation HEVs and EVs."
The new RH850/C1x devices can be used with the RAA270000KFT RH850 Family power supply management IC (PMIC), which is currently available in sample quantities. The power management IC integrates into one device all the power supply systems required for MCU operation, two external sensor power supply tracks, and a full complement of monitoring and diagnostic functions, significantly reducing the user burden associated with power supply system design.
Concerns about global warming and regulatory efforts to reduce automotive CO2 emissions are driving demand for new technologies to achieve higher efficiencies. For instance, the Corporate Average Fuel Economy (CAFE) standards are driving OEMS to increase overall fleet miles per gallon (MPG) to 54.5 MPG for cars and light-duty trucks by model-year 2025.
As HEV/EV implementations become more mainstream, higher performance applications will require MCUs with greater processing capabilities for efficient motor control. As the HEV/EV market expands, system designers are challenged to reduce costs and increase performance. By integrating hardware peripherals, dedicated for motor control, into the MCU, designers can reduce overall system costs and meet performance requirements.
HEV/EV systems are now being designed to meet ISO 26262 functional safety standards. This system requirement is driving semiconductor products to incorporate a number of embedded features that allow system designers to meet their safety goals.
Friday, August 29, 2014
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.